Loading…
FATMLPGS: Design of a fault-aware trust establishment model for low-power IoT deployments via generic lightweight sidechains
DoS, GH, Sybil, Masquerading, Spoofing, Man in the Middle, etc. constantly attack IoT networks. Internal or external attacks reduce end-to-end delay, throughput, energy use, and other metrics. To counter these attacks, researchers have proposed a number of security & privacy mechanisms with vary...
Saved in:
Published in: | Journal of intelligent & fuzzy systems 2023-06, Vol.44 (6), p.9183-9201 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | DoS, GH, Sybil, Masquerading, Spoofing, Man in the Middle, etc. constantly attack IoT networks. Internal or external attacks reduce end-to-end delay, throughput, energy use, and other metrics. To counter these attacks, researchers have proposed a number of security & privacy mechanisms with varying computational complexity and security levels. Immutability, traceability, transparency, and distributed nature make blockchain-based models secure. QoS depends on blockchain length, so these models aren’t scalable. Researchers say sidechaining improves QoS while remaining secure. Splitting or merging complex sidechains requires machine learning. Low-power IoT networks can’t use models. This text suggests a lightweight MGWO Model that helps establish initial routes by choosing high-trust nodes, reducing sidechaining power consumption, and incorporating fault-aware trust establishment. MGWO Model determines blockchain piece count for high QoS. MGWO Model uses Q-Learning to detect network faults. Fault identification is controlled by a stochastically modelled and activated Intrinsic Genetic Algorithm (IGA). Q-Learning, MGWO, and IGA can mitigate Sybil, Masquerading, Grey Hole, DDoS, and MITM attacks. Even when attacked, the proposed model maintains high QoS, improving real-time deployment efficiency. The proposed model improves energy efficiency by 15.9%, throughput by 10.6%, communication speed by 8.3%, and packet delivery by 0.8% for different network scenarios. |
---|---|
ISSN: | 1064-1246 1875-8967 |
DOI: | 10.3233/JIFS-223316 |