Loading…
A Multi-dimensional Deep Structured State Space Approach to Speech Enhancement Using Small-footprint Models
We propose a multi-dimensional structured state space (S4) approach to speech enhancement. To better capture the spectral dependencies across the frequency axis, we focus on modifying the multi-dimensional S4 layer with whitening transformation to build new small-footprint models that also achieve g...
Saved in:
Published in: | arXiv.org 2023-06 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose a multi-dimensional structured state space (S4) approach to speech enhancement. To better capture the spectral dependencies across the frequency axis, we focus on modifying the multi-dimensional S4 layer with whitening transformation to build new small-footprint models that also achieve good performance. We explore several S4-based deep architectures in time (T) and time-frequency (TF) domains. The 2-D S4 layer can be considered a particular convolutional layer with an infinite receptive field although it utilizes fewer parameters than a conventional convolutional layer. Evaluated on the VoiceBank-DEMAND data set, when compared with the conventional U-net model based on convolutional layers, the proposed TF-domain S4-based model is 78.6% smaller in size, yet it still achieves competitive results with a PESQ score of 3.15 with data augmentation. By increasing the model size, we can even reach a PESQ score of 3.18. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2306.00331 |