Loading…
Directed harmonic currents near non-hyperbolic linearizable singularities
Let $(\mathbb {D}^2,\mathscr {F},\{0\})$ be a singular holomorphic foliation on the unit bidisc $\mathbb {D}^2$ defined by the linear vector field $$ \begin{align*} z \frac{\partial}{\partial z}+ \unicode{x3bb} w \frac{\partial}{\partial w}, \end{align*} $$ where $\unicode{x3bb} \in \mathbb {C}^*$ ....
Saved in:
Published in: | Ergodic theory and dynamical systems 2023-07, Vol.43 (7), p.2228-2257 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let
$(\mathbb {D}^2,\mathscr {F},\{0\})$
be a singular holomorphic foliation on the unit bidisc
$\mathbb {D}^2$
defined by the linear vector field
$$ \begin{align*} z \frac{\partial}{\partial z}+ \unicode{x3bb} w \frac{\partial}{\partial w}, \end{align*} $$
where
$\unicode{x3bb} \in \mathbb {C}^*$
. Such a foliation has a non-degenerate singularity at the origin
${0:=(0,0) \in \mathbb {C}^2}$
. Let T be a harmonic current directed by
$\mathscr {F}$
which does not give mass to any of the two separatrices
$(z=0)$
and
$(w=0)$
. Assume
$T\neq 0$
. The Lelong number of T at
$0$
describes the mass distribution on the foliated space. In 2014 Nguyên (see [16]) proved that when
$\unicode{x3bb} \notin \mathbb {R}$
, that is, when
$0$
is a hyperbolic singularity, the Lelong number at
$0$
vanishes. Suppose the trivial extension
$\tilde {T}$
across
$0$
is
$dd^c$
-closed. For the non-hyperbolic case
$\unicode{x3bb} \in \mathbb {R}^*$
, we prove that the Lelong number at
$0$
: (1)
is strictly positive if
$\unicode{x3bb}>0$
;
(2)
vanishes if
$\unicode{x3bb} \in \mathbb {Q}_{ |
---|---|
ISSN: | 0143-3857 1469-4417 |
DOI: | 10.1017/etds.2022.46 |