Loading…
Variational convergence of the Scharfetter-Gummel scheme to the aggregation-diffusion equation and vanishing diffusion limit
In this paper, we explore the convergence of the semi-discrete Scharfetter-Gummel scheme for the aggregation-diffusion equation using a variational approach. Our investigation involves obtaining a novel gradient structure for the finite volume space discretization that works consistently for any non...
Saved in:
Published in: | arXiv.org 2024-10 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we explore the convergence of the semi-discrete Scharfetter-Gummel scheme for the aggregation-diffusion equation using a variational approach. Our investigation involves obtaining a novel gradient structure for the finite volume space discretization that works consistently for any non-negative diffusion constant. This allows us to study the discrete-to-continuum and zero-diffusion limits simultaneously. The zero-diffusion limit for the Scharfetter-Gummel scheme corresponds to the upwind finite volume scheme for the aggregation equation. In both cases, we establish a convergence result in terms of gradient structures, recovering the Otto gradient flow structure for the aggregation-diffusion equation based on the 2-Wasserstein distance. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2306.02226 |