Loading…
Fair Column Subset Selection
The problem of column subset selection asks for a subset of columns from an input matrix such that the matrix can be reconstructed as accurately as possible within the span of the selected columns. A natural extension is to consider a setting where the matrix rows are partitioned into two groups, an...
Saved in:
Published in: | arXiv.org 2024-08 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The problem of column subset selection asks for a subset of columns from an input matrix such that the matrix can be reconstructed as accurately as possible within the span of the selected columns. A natural extension is to consider a setting where the matrix rows are partitioned into two groups, and the goal is to choose a subset of columns that minimizes the maximum reconstruction error of both groups, relative to their respective best rank-k approximation. Extending the known results of column subset selection to this fair setting is not straightforward: in certain scenarios it is unavoidable to choose columns separately for each group, resulting in double the expected column count. We propose a deterministic leverage-score sampling strategy for the fair setting and show that sampling a column subset of minimum size becomes NP-hard in the presence of two groups. Despite these negative results, we give an approximation algorithm that guarantees a solution within 1.5 times the optimal solution size. We also present practical heuristic algorithms based on rank-revealing QR factorization. Finally, we validate our methods through an extensive set of experiments using real-world data. |
---|---|
ISSN: | 2331-8422 |