Loading…
On the effectiveness of the Moulinec–Suquet discretization for composite materials
Moulinec and Suquet introduced a method for computational homogenization based on the fast Fourier transform which turned out to be rather computationally efficient. The underlying discretization scheme was subsequently identified as an approach based on trigonometric polynomials, coupled to the tra...
Saved in:
Published in: | International journal for numerical methods in engineering 2023-07, Vol.124 (14), p.3191-3218 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Moulinec and Suquet introduced a method for computational homogenization based on the fast Fourier transform which turned out to be rather computationally efficient. The underlying discretization scheme was subsequently identified as an approach based on trigonometric polynomials, coupled to the trapezoidal rule to substitute full integration. For problems with smooth solutions, the power of spectral methods is well‐known. However, for heterogeneous microstructures, there are jumps in the coefficients, and the solution fields are not smooth enough due to discontinuities across material interfaces. Previous convergence results only provided convergence of the discretization per se, that is, without explicit rates, and could not explain the effectiveness of the discretization observed in practice. In this work, we provide such explicit convergence rates for the local strain as well as the stress field and the effective stresses based on more refined techniques. More precisely, we consider a class of industrially relevant, discontinuous elastic moduli separated by sufficiently smooth interfaces and show rates which are known to be sharp from numerical experiments. The applied techniques are of independent interest, that is, we employ a local smoothing strategy, utilize Féjer means as well as Bernstein estimates and rely upon recently established superconvergence results for the effective elastic energy in the Galerkin setting. The presented results shed theoretical light on the effectiveness of the Moulinec–Suquet discretization in practice. Indeed, the obtained convergence rates coincide with those obtained for voxel finite element methods, which typically require higher computational effort. |
---|---|
ISSN: | 0029-5981 1097-0207 |
DOI: | 10.1002/nme.7244 |