Loading…
Liouville‐type theorems for a nonlinear fractional Choquard equation
In this paper, we are concerned with the fractional Choquard equation on the whole space RN$\mathbb {R}^N$(−Δ)su=1|x|N−2s∗upup−1$$\begin{equation*} \hspace*{7pc}(-\Delta )^s u={\left(\frac{1}{|x|^{N-2s}}*u^p\right)}u^{p-1} \end{equation*}$$with 01$, we establish a Liouville type theorem saying that...
Saved in:
Published in: | Mathematische Nachrichten 2023-06, Vol.296 (6), p.2321-2331 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we are concerned with the fractional Choquard equation on the whole space RN$\mathbb {R}^N$(−Δ)su=1|x|N−2s∗upup−1$$\begin{equation*} \hspace*{7pc}(-\Delta )^s u={\left(\frac{1}{|x|^{N-2s}}*u^p\right)}u^{p-1} \end{equation*}$$with 01$, we establish a Liouville type theorem saying that if
N |
---|---|
ISSN: | 0025-584X 1522-2616 |
DOI: | 10.1002/mana.202000462 |