Loading…
A generalization of the cosine addition law on semigroups
Our main result is that we describe the solutions g , f : S → C of the functional equation g ( x σ ( y ) ) = g ( x ) g ( y ) - f ( x ) f ( y ) + α f ( x σ ( y ) ) , x , y ∈ S , where S is a semigroup, α ∈ C is a fixed constant and σ : S → S an involutive automorphism.
Saved in:
Published in: | Aequationes mathematicae 2023-08, Vol.97 (4), p.787-804 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Our main result is that we describe the solutions
g
,
f
:
S
→
C
of the functional equation
g
(
x
σ
(
y
)
)
=
g
(
x
)
g
(
y
)
-
f
(
x
)
f
(
y
)
+
α
f
(
x
σ
(
y
)
)
,
x
,
y
∈
S
,
where
S
is a semigroup,
α
∈
C
is a fixed constant and
σ
:
S
→
S
an involutive automorphism. |
---|---|
ISSN: | 0001-9054 1420-8903 |
DOI: | 10.1007/s00010-023-00946-1 |