Loading…

Biomechanics of bacterial gliding motion with Oldroyd-4 constant slime

Microscale gliders are regularly affected by the local surrounding environment, such as liquid rheology and physical (nearby) boundaries. This article focuses on the numerical simulations of bacterial speed over a non-Newtonian slime and its power expenditure. The flow rate generated by the swimmer,...

Full description

Saved in:
Bibliographic Details
Published in:The European physical journal. ST, Special topics Special topics, 2023-06, Vol.232 (6), p.915-925
Main Authors: Asghar, Zeeshan, Shatanawi, Wasfi, Hussain, Sajid
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Microscale gliders are regularly affected by the local surrounding environment, such as liquid rheology and physical (nearby) boundaries. This article focuses on the numerical simulations of bacterial speed over a non-Newtonian slime and its power expenditure. The flow rate generated by the swimmer, slime speed, shear stress and level curves are also points of interest. To fulfill the purpose, Oldroyd-4 constant model is assumed over a rigid boundary. A complex undulating sheet is approximated as a bacterial surface. Since a slime (present below the undulating sheet) is a non-Newtonian fluid, a modeling approach of peristaltic flow problem is adopted, and dynamic equilibrium conditions are implemented for steady motion. Implicit finite difference method (FDM) is employed to calculate the numerical solution of reduced boundary value problem. To compute the flow rate and cell speed, Broyden’s root finding algorithm is integrated with FDM. These computed values are further utilized to perceive the behavior of work done, shear stress at the surface of bacteria, velocity of slime and streamlines.
ISSN:1951-6355
1951-6401
DOI:10.1140/epjs/s11734-022-00723-2