Loading…

Robustly Learning a Single Neuron via Sharpness

We study the problem of learning a single neuron with respect to the \(L_2^2\)-loss in the presence of adversarial label noise. We give an efficient algorithm that, for a broad family of activations including ReLUs, approximates the optimal \(L_2^2\)-error within a constant factor. Our algorithm app...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2023-06
Main Authors: Wang, Puqian, Zarifis, Nikos, Diakonikolas, Ilias, Diakonikolas, Jelena
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study the problem of learning a single neuron with respect to the \(L_2^2\)-loss in the presence of adversarial label noise. We give an efficient algorithm that, for a broad family of activations including ReLUs, approximates the optimal \(L_2^2\)-error within a constant factor. Our algorithm applies under much milder distributional assumptions compared to prior work. The key ingredient enabling our results is a novel connection to local error bounds from optimization theory.
ISSN:2331-8422