Loading…

Aerosol sensitivity simulations over East Asia in a convection-permitting climate model

The parameterization of deep convection is one of the primary sources of uncertainties in regional climate simulations. Due to computational constraints, long-term kilometer-scale simulations with explicit deep convection have been limited, especially over East Asia. We here conduct a pair of 10-yea...

Full description

Saved in:
Bibliographic Details
Published in:Climate dynamics 2023-07, Vol.61 (1-2), p.861-881
Main Authors: Li, Shuping, Sørland, Silje Lund, Wild, Martin, Schär, Christoph
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The parameterization of deep convection is one of the primary sources of uncertainties in regional climate simulations. Due to computational constraints, long-term kilometer-scale simulations with explicit deep convection have been limited, especially over East Asia. We here conduct a pair of 10-years (2001–2010) reference simulations, one convection-parameterizing simulation at 12 km (0.11 ∘ ) resolution covering the CORDEX East Asia domain, and one 4.4-km (0.04 ∘ ) convection-permitting simulation over a subdomain. The two simulations are driven by the ERA5 reanalysis and the coarser-resolution simulation, respectively. The 4.4-km convection-permitting simulation noticeably improves the representation of the top-of-atmosphere outgoing longwave and shortwave radiation as well as precipitation intensity. In addition, sensitivity simulations are performed with perturbed sulfate and black carbon aerosols, considering the direct and semi-direct aerosol radiative effects. For the simulations with sulfate aerosol perturbations, the cloud radiative effect partly offsets the aerosol radiative effects. Decreasing sulfate aerosols leads to low-level warming, destabilizing the atmospheric stratification and thereby increasing mean precipitation and the frequency of wet days. Increasing sulfate aerosols leads to an approximately opposite response. For the simulations with black carbon aerosol perturbations, there is some near-surface warming for both increases and decreases in aerosol concentration. Also, there are significant changes in cloud cover, but changes in precipitation are comparatively weak. While for sulfate aerosol perturbations the response is approximately linear (in the sense that positive and negative perturbations yield approximately opposite effects), the response to black carbon aerosol perturbations is more complex and shows some nonlinearity, regardless of the treatment of deep convection in the simulations. We present a simple interpretation for this surprising result.
ISSN:0930-7575
1432-0894
DOI:10.1007/s00382-022-06620-7