Loading…
On the Periods of Twisted Moments of the Kloosterman Connection
This paper aims to study the Betti homology and de Rham cohomology of twisted symmetric powers of the Kloosterman connection of rank two on the torus. We compute the period pairing and, with respect to certain bases, interpret these associated period numbers in terms of the Bessel moments. Via the r...
Saved in:
Published in: | arXiv.org 2024-09 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper aims to study the Betti homology and de Rham cohomology of twisted symmetric powers of the Kloosterman connection of rank two on the torus. We compute the period pairing and, with respect to certain bases, interpret these associated period numbers in terms of the Bessel moments. Via the rational structures on Betti homology and de Rham cohomology, we prove the \(\mathbb{Q}\)-linear and quadratic relations among these Bessel moments. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2306.15216 |