Loading…
Frex: dependently-typed algebraic simplification
We present an extensible, mathematically-structured algebraic simplification library design. We structure the library using universal algebraic concepts: a free algebra -- fral -- and a free extension -- frex -- of an algebra by a set of variables. The library's dependently-typed API guarantees...
Saved in:
Published in: | arXiv.org 2023-06 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present an extensible, mathematically-structured algebraic simplification library design. We structure the library using universal algebraic concepts: a free algebra -- fral -- and a free extension -- frex -- of an algebra by a set of variables. The library's dependently-typed API guarantees simplification modules, even user-defined ones, are terminating, sound, and complete with respect to a well-specified class of equations. Completeness offers intangible benefits in practice -- our main contribution is the novel design. Cleanly separating between the interface and implementation of simplification modules provides two new modularity axes. First, simplification modules share thousands of lines of infrastructure code dealing with term-representation, pretty-printing, certification, and macros/reflection. Second, new simplification modules can reuse existing ones. We demonstrate this design by developing simplification modules for monoid varieties: ordinary, commutative, and involutive. We implemented this design in the new Idris2 dependently-typed programming language, and in Agda. |
---|---|
ISSN: | 2331-8422 |