Loading…
Feasible Newton methods for symmetric tensor Z-eigenvalue problems
Finding a Z-eigenpair of a symmetric tensor is equivalent to finding a Karush-Kuhn-Tucker point of a sphere constrained minimization problem. Based on this equivalency, in this paper, we first propose a class of iterative methods to get a Z-eigenpair of a symmetric tensor. Each method can generate a...
Saved in:
Published in: | Optimization methods & software 2023-05, Vol.38 (3), p.510-528 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Finding a Z-eigenpair of a symmetric tensor is equivalent to finding a Karush-Kuhn-Tucker point of a sphere constrained minimization problem. Based on this equivalency, in this paper, we first propose a class of iterative methods to get a Z-eigenpair of a symmetric tensor. Each method can generate a sequence of feasible points such that the sequence of function evaluations is decreasing. These methods can be regarded as extensions of the descent methods for unconstrained optimization problems. We pay particular attention to the Newton method. We show that under appropriate conditions, the Newton method is globally and quadratically convergent. Moreover, after finitely many iterations, the unit steplength will always be accepted. We also propose a nonlinear equations-based Newton method and establish its global and quadratic convergence. In the end, we do several numerical experiments to test the proposed Newton methods. The results show that both Newton methods are very efficient. |
---|---|
ISSN: | 1055-6788 1029-4937 |
DOI: | 10.1080/10556788.2022.2142586 |