Loading…
A sustainable approach for providing water repellency in textiles by using long-chain cellulose esters
Long-chain cellulose esters (LCCEs) are recently developed cellulose derivatives showing properties that are relevant to diverse applications, such as coatings, films and plastics. The nonpolar aliphatic tails of the fatty ester groups impart strong hydrophobic properties to LCCEs, the physicochemic...
Saved in:
Published in: | Cellulose (London) 2023-07, Vol.30 (11), p.7347-7362 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Long-chain cellulose esters (LCCEs) are recently developed cellulose derivatives showing properties that are relevant to diverse applications, such as coatings, films and plastics. The nonpolar aliphatic tails of the fatty ester groups impart strong hydrophobic properties to LCCEs, the physicochemical basis for most of the proposed uses. In previous work, we developed LCCE-based formulations as hydrophobicity-promoting agents for pure cotton textiles. Herein, we aimed to expand the use of LCCEs as eco-friendly hydrophobic additives in textiles with different compositions, namely synthetic fibers and mixtures thereof. The LCCE-based formulations were applied by a conventional textile dry-cleaning industrial process, using three types of solvents (one conventional and two green alternative ones). We observed that even for synthetic fibers or blends, there was no need to use crosslinkers to anchor LCCEs to textiles, nor need for pre-treatments to promote an increase in hydrophobic capacity. Water-repellent textiles were thus obtained through sustainable flourine-free compounds, with easy and self-cleaning properties. |
---|---|
ISSN: | 0969-0239 1572-882X |
DOI: | 10.1007/s10570-023-05311-8 |