Loading…
Trace and norm of indecomposable integers in cubic orders
We study the structure of additively indecomposable integers in families of totally real cubic fields. We prove that for cubic orders in these fields, the minimal traces of indecomposable integers multiplied by totally positive elements of the codifferent can be arbitrarily large. This is very surpr...
Saved in:
Published in: | The Ramanujan journal 2023-08, Vol.61 (4), p.1121-1144 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the structure of additively indecomposable integers in families of totally real cubic fields. We prove that for cubic orders in these fields, the minimal traces of indecomposable integers multiplied by totally positive elements of the codifferent can be arbitrarily large. This is very surprising, as in the so-far studied examples of quadratic and simplest cubic fields, this minimum is 1 or 2. We further give sharp upper bounds on the norms of indecomposable integers in our families. |
---|---|
ISSN: | 1382-4090 1572-9303 |
DOI: | 10.1007/s11139-022-00669-y |