Loading…
Effects of reconstruction of variables on the accuracy and computational performance of upscaling solutions of the shallow water equations
This paper presents a new sub-grid flood inundation model obtained by upscaling the shallow water equations (SWE) to enhance the model efficiency in large-scale problems. The model discretizes study domains using two nested meshes. The equations are solved at the coarse mesh by a second-order accura...
Saved in:
Published in: | Journal of hydraulic research 2023-05, Vol.61 (3), p.409-421 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a new sub-grid flood inundation model obtained by upscaling the shallow water equations (SWE) to enhance the model efficiency in large-scale problems. The model discretizes study domains using two nested meshes. The equations are solved at the coarse mesh by a second-order accurate in space (i.e. piecewise linear reconstruction of variables) Godunov-type finite volume (FV) method, while the fine mesh is used to incorporate high-resolution topography and roughness into the solution. The accuracy and performance of the model were compared against a first-order version of the model recently proposed by the authors and a second-order conventional FV model using artificial and real-world test problems. Results showed that improved accuracy is delivered by the proposed model, and that at low-resolution meshes, the spatial reconstruction of variables of the numerical scheme plays a major role in the solution's accuracy. |
---|---|
ISSN: | 0022-1686 1814-2079 |
DOI: | 10.1080/00221686.2023.2201210 |