Loading…
Quench sensitivity of Al–Cu–Mg alloy thick plate
The quench sensitivity of Al–Cu–Mg alloy was investigated at different thicknesses of the thick plate. The quenching process was simulated via finite element analysis (FEA); time–temperature–property (TTP) curves and time–temperature–transformation (TTT) curves were obtained through hardness test an...
Saved in:
Published in: | Rare metals 2023-09, Vol.42 (9), p.3161-3169 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The quench sensitivity of Al–Cu–Mg alloy was investigated at different thicknesses of the thick plate. The quenching process was simulated via finite element analysis (FEA); time–temperature–property (TTP) curves and time–temperature–transformation (TTT) curves were obtained through hardness test and differential scanning calorimetry (DSC) test; and the microstructural observation was carried out by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Experimental results exhibit that the quench cooling rate decreases dramatically from the surface to the center of the plate, and the inhomogeneous quenching causes the difference in microstructure. With the decrease in quench cooling rate, constituent particles are coarsening gradually; the quantity of T-phase (Al
20
Cu
2
Mn
3
) increases and the S-phase (Al
2
CuMg) decreases. According to the precipitation kinetics analysis, the decrease in S-phase is caused by the increase in precipitate activation energy. So that the center of the plate shows the highest quenching sensitivity, which is consistent with the analysis of time–temperature–property curves and time–temperature–transformation curves. |
---|---|
ISSN: | 1001-0521 1867-7185 |
DOI: | 10.1007/s12598-018-1196-6 |