Loading…

Galois representations of superelliptic curves

A superelliptic curve over a discrete valuation ring $\mathscr{O}$ of residual characteristic p is a curve given by an equation $\mathscr{C}\;:\; y^n=\,f(x)$ , with $\textrm{Disc}(\,f)\neq 0$ . The purpose of this article is to describe the Galois representation attached to such a curve under the hy...

Full description

Saved in:
Bibliographic Details
Published in:Glasgow mathematical journal 2023-05, Vol.65 (2), p.356-382
Main Authors: Pacetti, Ariel, Villanueva, Angel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A superelliptic curve over a discrete valuation ring $\mathscr{O}$ of residual characteristic p is a curve given by an equation $\mathscr{C}\;:\; y^n=\,f(x)$ , with $\textrm{Disc}(\,f)\neq 0$ . The purpose of this article is to describe the Galois representation attached to such a curve under the hypothesis that f(x) has all its roots in the fraction field of $\mathscr{O}$ and that $p \nmid n$ . Our results are inspired on the algorithm given in Bouw and WewersGlasg (Math. J. 59(1) (2017), 77–108.) but our description is given in terms of a cluster picture as defined in Dokchitser et al. (Algebraic curves and their applications, Contemporary Mathematics, vol. 724 (American Mathematical Society, Providence, RI, 2019), 73–135.).
ISSN:0017-0895
1469-509X
DOI:10.1017/S0017089522000386