Loading…
Unsupervised single-shot depth estimation using perceptual reconstruction
Real-time estimation of actual object depth is an essential module for various autonomous system tasks such as 3D reconstruction, scene understanding and condition assessment. During the last decade of machine learning, extensive deployment of deep learning methods to computer vision tasks has yield...
Saved in:
Published in: | Machine vision and applications 2023-09, Vol.34 (5), p.82, Article 82 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Real-time estimation of actual object depth is an essential module for various autonomous system tasks such as 3D reconstruction, scene understanding and condition assessment. During the last decade of machine learning, extensive deployment of deep learning methods to computer vision tasks has yielded approaches that succeed in achieving realistic depth synthesis out of a simple RGB modality. Most of these models are based on paired RGB-depth data and/or the availability of video sequences and stereo images. However, the lack of RGB-depth pairs, video sequences, or stereo images makes depth estimation a challenging task that needs to be explored in more detail. This study builds on recent advances in the field of generative neural networks in order to establish fully unsupervised single-shot depth estimation. Two generators for RGB-to-depth and depth-to-RGB transfer are implemented and simultaneously optimized using the Wasserstein-1 distance, a novel perceptual reconstruction term, and hand-crafted image filters. We comprehensively evaluate the models using a custom-generated industrial surface depth data set as well as the Texas 3D Face Recognition Database, the CelebAMask-HQ database of human portraits and the SURREAL dataset that records body depth. For each evaluation dataset, the proposed method shows a significant increase in depth accuracy compared to state-of-the-art single-image transfer methods. |
---|---|
ISSN: | 0932-8092 1432-1769 |
DOI: | 10.1007/s00138-023-01410-5 |