Loading…
Counting multiplicative approximations
A famous conjecture of Littlewood (c. 1930) concerns approximating two real numbers by rationals of the same denominator, multiplying the errors. In a lesser-known paper, Wang and Yu (Chin Ann Math 2:1–12, 1981) established an asymptotic formula for the number of such approximations, valid almost al...
Saved in:
Published in: | The Ramanujan journal 2023-09, Vol.62 (1), p.241-250 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A famous conjecture of Littlewood (c. 1930) concerns approximating two real numbers by rationals of the same denominator, multiplying the errors. In a lesser-known paper, Wang and Yu (Chin Ann Math 2:1–12, 1981) established an asymptotic formula for the number of such approximations, valid almost always. Using the quantitative Koukoulopoulos–Maynard theorem of Aistleitner–Borda–Hauke, together with bounds arising from the theory of Bohr sets, we deduce lower bounds of the expected order of magnitude for inhomogeneous and fibre refinements of the problem. |
---|---|
ISSN: | 1382-4090 1572-9303 |
DOI: | 10.1007/s11139-022-00610-3 |