Loading…
An intelligence parameter classification approach for energy storage and natural convection and heat transfer of nano-encapsulated phase change material: Deep neural networks
A deep neural network is utilized to classify the parameters of a natural convection heat transfer of a nano-encapsulated phase change material suspension using the isotherm images for the first time. A natural convection flow and heat transfer simulation dataset were created and used as a training...
Saved in:
Published in: | Neural computing & applications 2023-09, Vol.35 (27), p.19719-19727 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A deep neural network is utilized to classify the parameters of a natural convection heat transfer of a nano-encapsulated phase change material suspension using the isotherm images for the first time. A natural convection flow and heat transfer simulation dataset were created and used as a training and validation tool. Then, a deep neural network, consisting of three parts, was used for the classification task. The first part was made of several conventional layers, and a rectified linear unit activation layer supported each layer. The second part was a preparation layer for reshaping from 2D images to 1D classification. The third layer was made of a classifier layer. The results showed that the impact of the Rayleigh number and volume concentrations of nanoparticles could be classified by 99.8 and 93.32% accuracy, respectively. However, the Stefan number was classified weakly. As a part of the current research, a transfer learning approach was used to improve accuracy. The learning transfer approach was quite effective and improved the accuracy of the Stefan number classification by 16.6%. |
---|---|
ISSN: | 0941-0643 1433-3058 |
DOI: | 10.1007/s00521-023-08708-5 |