Loading…
EXACT SOLUTIONS OF HYPERBOLIC REACTION-DIFFUSION EQUATIONS IN TWO DIMENSIONS
Exact solutions are constructed for a class of nonlinear hyperbolic reaction-diffusion equations in two-space dimensions. Reduction of variables and subsequent solutions follow from a special nonclassical symmetry that uncovers a conditionally integrable system, equivalent to the linear Helmholtz eq...
Saved in:
Published in: | The ANZIAM journal 2022-10, Vol.64 (4), p.338-354 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Exact solutions are constructed for a class of nonlinear hyperbolic reaction-diffusion equations in two-space dimensions. Reduction of variables and subsequent solutions follow from a special nonclassical symmetry that uncovers a conditionally integrable system, equivalent to the linear Helmholtz equation. The hyperbolicity is commonly associated with a speed limit due to a delay,
$\tau $
, between gradients and fluxes. With lethal boundary conditions on a circular domain wherein a species population exhibits logistic growth of Fisher–KPP type with equal time lag, the critical domain size for avoidance of extinction does not depend on
$\tau $
. A diminishing exact solution within a circular domain is also constructed, when the reaction represents a weak Allee effect of Huxley type. For a combustion reaction of Arrhenius type, the only known exact solution that is finite but unbounded is extended to allow for a positive
$\tau $
. |
---|---|
ISSN: | 1446-1811 1446-8735 |
DOI: | 10.1017/S1446181123000093 |