Loading…

EXACT SOLUTIONS OF HYPERBOLIC REACTION-DIFFUSION EQUATIONS IN TWO DIMENSIONS

Exact solutions are constructed for a class of nonlinear hyperbolic reaction-diffusion equations in two-space dimensions. Reduction of variables and subsequent solutions follow from a special nonclassical symmetry that uncovers a conditionally integrable system, equivalent to the linear Helmholtz eq...

Full description

Saved in:
Bibliographic Details
Published in:The ANZIAM journal 2022-10, Vol.64 (4), p.338-354
Main Authors: BROADBRIDGE, P., GOARD, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Exact solutions are constructed for a class of nonlinear hyperbolic reaction-diffusion equations in two-space dimensions. Reduction of variables and subsequent solutions follow from a special nonclassical symmetry that uncovers a conditionally integrable system, equivalent to the linear Helmholtz equation. The hyperbolicity is commonly associated with a speed limit due to a delay, $\tau $ , between gradients and fluxes. With lethal boundary conditions on a circular domain wherein a species population exhibits logistic growth of Fisher–KPP type with equal time lag, the critical domain size for avoidance of extinction does not depend on $\tau $ . A diminishing exact solution within a circular domain is also constructed, when the reaction represents a weak Allee effect of Huxley type. For a combustion reaction of Arrhenius type, the only known exact solution that is finite but unbounded is extended to allow for a positive $\tau $ .
ISSN:1446-1811
1446-8735
DOI:10.1017/S1446181123000093