Loading…
Symmetry reductions of a (2 + 1)‐dimensional Keller–Segel model
In this work, symmetry groups are used to determine symmetry reductions of a (2 + 1)‐dimensional Keller–Segel system depending on two arbitrary functions. We show that the point symmetries of the considered Keller–Segel system comprise an infinite‐dimensional Lie algebra which involves three arbitra...
Saved in:
Published in: | Mathematical methods in the applied sciences 2023-10, Vol.46 (15), p.15972-15981 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, symmetry groups are used to determine symmetry reductions of a (2 + 1)‐dimensional Keller–Segel system depending on two arbitrary functions. We show that the point symmetries of the considered Keller–Segel system comprise an infinite‐dimensional Lie algebra which involves three arbitrary functions. By way of example, we have used these point symmetries to reduce straightaway the given system of second‐order partial differential equations to a system of second‐order ordinary differential equations. Moreover, we are allowed to substitute one of the dependent variables from one of the equations into the other, leading to an equivalent fourth‐order nonlinear ordinary differential equation. This equation is reduced through the use of solvable symmetry subalgebras, and some exact solutions are obtained for a particular case. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.7330 |