Loading…

Detailed studies of the processes in low energy H irradiation of Li and Li-compound surfaces

We have used a combination of pico-to-nano temporal/spatial scale computational physics and chemistry modeling of plasma–material interfaces in the tokamak fusion plasma edges to unravel the evolving characteristics, not readily accessible by empirical means, of lithium-, oxygen-, and hydrogen-conta...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2023-09, Vol.134 (10)
Main Authors: Krstic, P. S., Ostrowski, E. T., Dwivedi, S., Abe, S., Maan, A., van Duin, A. C. T., Koel, B. E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have used a combination of pico-to-nano temporal/spatial scale computational physics and chemistry modeling of plasma–material interfaces in the tokamak fusion plasma edges to unravel the evolving characteristics, not readily accessible by empirical means, of lithium-, oxygen-, and hydrogen-containing materials of plasma-facing components under irradiation by hydrogen and its isotopes. In the present calculation, amorphous lithium compound surfaces containing oxygen, Li2O, and LiOH were irradiated by 1–100 eV particles at incident angles on the surface ranging from perpendicular to almost grazing angles. Consequential surface processes, reflection, retention, and sputtering were studied at “the same footing” and compared to earlier results from amorphous Li and LiH surfaces. The critical role of charging dynamics of lithium, oxygen, and hydrogen atoms in the surface chemistry during hydrogen-fuel irradiation was found to drive the kinetics and dynamics of these surfaces in unexpected ways that ultimately could have profound effects on fusion plasma confinement behavior and surface erosion.
ISSN:0021-8979
1089-7550
DOI:10.1063/5.0149502