Loading…
Palladium nanocatalyst assisted in situ regeneration of amino donor in a one-enzyme cascade
α-Chiral amines are key intermediates for scalable preparation of bioactive compounds; herein we present a novel palladium-based nanocatalyst capable of selectively catalyzing the reductive amination of carbonyl compounds, which enables the in situ regeneration of amino donors from wasteful co-produ...
Saved in:
Published in: | Green chemistry : an international journal and green chemistry resource : GC 2023-09, Vol.25 (18), p.7372-7380 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | α-Chiral amines are key intermediates for scalable preparation of bioactive compounds; herein we present a novel palladium-based nanocatalyst capable of selectively catalyzing the reductive amination of carbonyl compounds, which enables the
in situ
regeneration of amino donors from wasteful co-products in a one-enzyme cascade using ω-transaminase, without the requirement of the expensive coenzyme NAD(P)H. The cascade network combines a ω-transaminase-assisted transamination with a selective reductive amination reaction facilitated by a heterogeneous palladium-based nanocatalyst. Nitrogen is sourced from hydroxylamine ions to convert generated co-products back into amino donors, yielding chiral amines with exceptional yields of up to 99% and excellent enantioselectivity. This chemoenzymatic one-enzyme transamination-reductive amination cascade network is highly atom-efficient and generates H
2
O as its sole by-product, demonstrating its potential impact in synthetic chemistry and beyond. |
---|---|
ISSN: | 1463-9262 1463-9270 |
DOI: | 10.1039/D3GC01786A |