Loading…
Absorption enhancement in GaAs based quantum dot solar cells using double-sided nanopyramid arrays
Quantum dot solar cells (QDSCs) are regarded as one of the most efficient devices due to their intermediate band structures. A suitable light-trapping (LT) strategy matching the absorption spectrum is important to improve the photocurrent conversion efficiency of QDSCs. In this paper, we have propos...
Saved in:
Published in: | Applied optics (2004) 2023-09, Vol.62 (26), p.7111 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Quantum dot solar cells (QDSCs) are regarded as one of the most efficient devices due to their intermediate band structures. A suitable light-trapping (LT) strategy matching the absorption spectrum is important to improve the photocurrent conversion efficiency of QDSCs. In this paper, we have proposed a design of the periodically patterned top and bottom dielectric nanopyramid arrays for highly efficient light trapping in GaAs-based QDSCs. The dielectric nanopyramid arrays significantly improve the light absorption of QDSCs in the longer wavelength between 0.8 µm and 1.2 µm. In addition, this LT structure ensures a completely flat window layer and back surface field layer while passivating these semiconductor surfaces. For the optimized double-sided structure, the short-circuit current generated by QDSC is 34.32mA/cm 2 , where the photocurrent from the quantum dots (QDs) is 5.17mA/cm 2 . Compared to the photocurrent of the QDSC without an LT structure, the photocurrent of the double-sided structure is increased by 84%. The QD photocurrent of the double-sided structure is increased by 570% compared to that of the QDSC without the LT structure. |
---|---|
ISSN: | 1559-128X 2155-3165 |
DOI: | 10.1364/AO.500657 |