Loading…

Well-Posedness of a Nonlinear Shallow Water Model for an Oscillating Water Column with Time-Dependent Air Pressure

We propose in this paper a new nonlinear mathematical model of an oscillating water column (OWC). The one-dimensional shallow water equations in the presence of this device are reformulated as a transmission problem related to the interaction between waves and a fixed partially immersed structure. B...

Full description

Saved in:
Bibliographic Details
Published in:Journal of nonlinear science 2023-12, Vol.33 (6), Article 103
Main Authors: Bocchi, Edoardo, He, Jiao, Vergara-Hermosilla, Gastón
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We propose in this paper a new nonlinear mathematical model of an oscillating water column (OWC). The one-dimensional shallow water equations in the presence of this device are reformulated as a transmission problem related to the interaction between waves and a fixed partially immersed structure. By imposing the conservation of the total fluid-OWC energy in the non-damped scenario, we are able to derive a transmission condition that involves a time-dependent air pressure inside the chamber of the device, instead of a constant atmospheric pressure as in Bocchi et al. (ESAIM Proc Surv 70:68–83, 2021). We then show that the transmission problem can be reduced to a quasilinear hyperbolic initial boundary value problem with a semi-linear boundary condition determined by an ODE depending on the trace of the solution to the PDE at the boundary. Local well-posedness for general problems of this type is established via an iterative scheme by using linear estimates for the PDE and nonlinear estimates for the ODE.
ISSN:0938-8974
1432-1467
DOI:10.1007/s00332-023-09964-4