Loading…
A Comprehensive Chemistry Experiment for Undergraduates to Investigate the Photodegradation of Organic Dyes by ZnO/GO Nanocomposite
The dangers of organic dye pollutants and environmental pollution improvement through photocatalytic degradation are important courses in applied chemistry programs in universities. Zinc oxide (ZnO)-based nanomaterials are potent catalytic agents against organic dyes, but few experiments are availab...
Saved in:
Published in: | Journal of chemical education 2023-09, Vol.100 (9), p.3556-3563 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The dangers of organic dye pollutants and environmental pollution improvement through photocatalytic degradation are important courses in applied chemistry programs in universities. Zinc oxide (ZnO)-based nanomaterials are potent catalytic agents against organic dyes, but few experiments are available for students to understand their role and mechanism in class. Herein, we designed a comprehensive experiment across 24 class hours for undergraduates to investigate the photodegradation of colored organic dyes, including methylene blue, methyl orange, methyl violet, rhodamine B, basic fuchsin, and thymolphthalein, by a nanocomposite composed of ZnO-coated graphene oxide (ZnO/GO). This nanomaterial was prepared using a facile heating reflux method within 1 h. Scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction were introduced to students to characterize the synthesized products. Students could observe the time- and dose-dependent degradation as well as the reusability of ZnO/GO. Additionally, the addition of t-butanol, benzoquinone, and triethanolamine, scavengers of hydroxyl radical (•OH), superoxide anion (•O2–), and hole (h+), respectively, to the degradation system allowed them to master the underlying catalytic mechanism of ZnO/GO. This experiment improves students’ understanding of the photocatalytic effect of ZnO nanomaterials and stimulates them to engage in the field of applied chemistry and thus is worth recommending to undergraduates. |
---|---|
ISSN: | 0021-9584 1938-1328 |
DOI: | 10.1021/acs.jchemed.3c00172 |