Loading…
YOLO v7-ECA-PConv-NWD Detects Defective Insulators on Transmission Lines
This paper proposes an enhanced YOLO v7-based method for detecting insulator defects in transmission lines, addressing the challenges of low accuracy and high leakage rates caused by complex backgrounds and electric poles alongside varying sizes of insulator targets in the image. Firstly, to address...
Saved in:
Published in: | Electronics (Basel) 2023-09, Vol.12 (18), p.3969 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper proposes an enhanced YOLO v7-based method for detecting insulator defects in transmission lines, addressing the challenges of low accuracy and high leakage rates caused by complex backgrounds and electric poles alongside varying sizes of insulator targets in the image. Firstly, to address the issue of background interference and improve the importance of insulator features, a lightweight attention mechanism named Efficient Channel Attention (ECA) was introduced. With the incorporation of ECA, this model could effectively suppress background noise and provide more focus to insulator regions, thus enhancing its ability to detect insulator defects accurately. Secondly, a partial convolution (PConv) approach was employed in the backbone network instead of conventional convolution, which learned some important channels. This substitution improved both the network model’s accuracy and the training speed. Finally, the Normalized Wasserstein Distance (NWD) prevented insulator features from being lost during pre-feature extraction, which reduced the leakage rate and improved the detection accuracy of small target insulators and defective insulators. The experimental results demonstrate that the improved YOLO v7 network model achieved an average detection accuracy (mAP) of 98.1%, recall of 93.7%, and precision of 96.8% on the TISLTR dataset. On the FISLTR dataset, the average detection accuracy (mAP) for flashover insulators was 93%, with a recall of 92.3% and precision of 87.1%. The average detection accuracy (mAP) for broken insulators was 92.2%, with a recall of 90.3% and a precision of 95.2%. These metrics demonstrate significant improvements in both datasets, highlighting the proposed algorithms’ strong generalization capability and practicable potential to detect insulator targets. |
---|---|
ISSN: | 2079-9292 2079-9292 |
DOI: | 10.3390/electronics12183969 |