Loading…
Salt tolerance assessment of aquatic and wetland plants: increased salinity can reshape aquatic vegetation communities
Salinization is a great threat to wetlands and freshwater ecosystems. Increased salinity can disturb native aquatic vegetation and provide an empty niche for invasion of non-native species. To understand the fate of aquatic flora under increased salinity levels, 14 dominant wetland species with diff...
Saved in:
Published in: | Hydrobiologia 2023-11, Vol.850 (20), p.4575-4587 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Salinization is a great threat to wetlands and freshwater ecosystems. Increased salinity can disturb native aquatic vegetation and provide an empty niche for invasion of non-native species. To understand the fate of aquatic flora under increased salinity levels, 14 dominant wetland species with different growth forms (submersed, amphibious, floating-leaved, emergent and woody/tree) were exposed to increased salinity conditions. The objective was to assess the salt tolerance threshold for each species and model their performance in response to a salinity gradient ranging from 0.2 to 20 parts per thousand (ppt). Plant growth and survival rate were analyzed using a nonlinear regression model to project sublethal salinity concentrations that would reduce biomass and visual quality of each species by 50% (LC
50
). Results showed that a few non-native species (alligatorweed:
Alternanthera philoxeroides
(Mart.) Griseb., torpedograss:
Panicum repens
L., and Brazilian peppertree:
Schinus terebinthifolius
Raddi) survived 20 ppt salinity, whereas all other native and non-native species perished at salinity below 10 ppt. Increased salinity can suppress salt-sensitive native plants and increase the opportunity of invasion for salt-tolerant non-native species. This suggests that alligatorweed, torpedograss and Brazilian peppertree pose a more significant threat to the ecosystem if salinity levels continue to increase in freshwater ecosystems and exacerbate the encroachment of non-native species into native plant communities. |
---|---|
ISSN: | 0018-8158 1573-5117 |
DOI: | 10.1007/s10750-022-04934-5 |