Loading…
SPLENDAQ: A Detector-Agnostic Data Acquisition System for Small-Scale Physics Experiments
Many scientific applications from rare-event searches to condensed matter system characterization to high-rate nuclear experiments require time-domain triggering on a raw stream of data, where the triggering is generally threshold-based or randomly acquired. When carrying out detector R&D, there...
Saved in:
Published in: | arXiv.org 2024-01 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Many scientific applications from rare-event searches to condensed matter system characterization to high-rate nuclear experiments require time-domain triggering on a raw stream of data, where the triggering is generally threshold-based or randomly acquired. When carrying out detector R&D, there is a need for a general data acquisition (DAQ) system to quickly and efficiently process such data. In the SPLENDOR collaboration, we are developing the Python-based SPLENDAQ package for this exact purpose - it offers two main features for offline analysis of continuous data: a threshold-triggering algorithm based on the time-domain optimal filter formalism and an algorithm for randomly choosing nonoverlapping segments for noise measurements. Combined with the commercially available Moku platform, developed by Liquid Instruments, we have a full pipeline of event building off raw data with minimal setup. Here, we review the underlying principles of this detector-agnostic DAQ package and give concrete examples of its utility in various applications. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2310.01279 |