Loading…

Incompatible Deformations in Relativistic Elasticity

The work develops differential-geometric methods for modeling incompatible deformations and stresses caused by them in hyperelastic supermassive bodies within the framework of special and general relativity. Particular attention is paid to a unified geometric language used both for modeling distribu...

Full description

Saved in:
Bibliographic Details
Published in:Lobachevskii journal of mathematics 2023-06, Vol.44 (6), p.2352-2397
Main Authors: Lychev, S. A., Koifman, K. G., Pivovaroff, N. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The work develops differential-geometric methods for modeling incompatible deformations and stresses caused by them in hyperelastic supermassive bodies within the framework of special and general relativity. Particular attention is paid to a unified geometric language used both for modeling distributed defects and gravitational interaction. It is shown that finite incompatible deformations that do not evolve in time can be formalized in terms of the curvature or torsion of the connection on the 3D material manifold obtained as the image of the projection of the body world tube, while the gravitational interaction is formalized in terms of the curvature and torsion of 4D space-time manifold. To describe the evolution of the material composition of a body, which occurs, for example, as a result of accretion, instead of a 3D material manifold, one should consider a body-tube in a 4D material space. In this case, from a formal mathematical point of view, the description of distributed defects and gravity becomes equivalent, and both, material manifold and space-time manifold are derived from a single fundamental object, which is a four-dimensional topological vector space. The developed approach can be used to model the processes of evolution of the stress-strain state of neutron star crusts and their local spontaneous destruction.
ISSN:1995-0802
1818-9962
DOI:10.1134/S1995080223060343