Loading…
Characterization of graphs of diameter 2 containing a homeomorphically irreducible spanning tree
A spanning tree of a graph with no vertex of degree 2 is called a homeomorphically irreducible spanning tree (HIST) of the graph. In 1990, Albertson, Berman, Hutchinson, and Thomassen conjectured that every twin‐free graph with diameter 2 contains a HIST. Recently, Ando disproved this conjecture and...
Saved in:
Published in: | Journal of graph theory 2023-12, Vol.104 (4), p.886-903 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A spanning tree of a graph with no vertex of degree 2 is called a homeomorphically irreducible spanning tree (HIST) of the graph. In 1990, Albertson, Berman, Hutchinson, and Thomassen conjectured that every twin‐free graph with diameter 2 contains a HIST. Recently, Ando disproved this conjecture and characterized twin‐free graphs with diameter 2 that do contain a HIST. In this paper, we give a complete characterization of all graphs of diameter 2 that contain a HIST. This characterization gives alternative proofs for several known results. |
---|---|
ISSN: | 0364-9024 1097-0118 |
DOI: | 10.1002/jgt.23005 |