Loading…
Controlling spin-orbit coupling to tailor type-II Dirac bands
NiTe2, a type-II Dirac semimetal with strongly tilted Dirac band, has been explored extensively to understand its intriguing topological properties. Here, using density-functional theory (DFT) calculations, we report that the strength of spin-orbit coupling (SOC) in NiTe2 can be tuned by Se substitu...
Saved in:
Published in: | arXiv.org 2023-10 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | NiTe2, a type-II Dirac semimetal with strongly tilted Dirac band, has been explored extensively to understand its intriguing topological properties. Here, using density-functional theory (DFT) calculations, we report that the strength of spin-orbit coupling (SOC) in NiTe2 can be tuned by Se substitution. This results in negative shifts of the bulk Dirac point (BDP) while preserving the type-II Dirac band. Indeed, combined studies using scanning tunneling spectroscopy (STS) and angle-resolved photoemission spectroscopy (ARPES) confirm that the BDP in the NiTe2-xSex alloy moves from +0.1 eV (NiTe2) to -0.3 eV (NiTeSe) depending on the Se concentrations, indicating the effective tunability of type-II Dirac fermions. Our results demonstrate an approach to tailor the type-II Dirac band in NiTe2 by controlling the SOC strength via chalcogen substitution. This approach can be applicable to different types of topological materials. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2310.14202 |