Loading…
Cat(0) polygonal complexes are 2-median
Median spaces are spaces in which for every three points the three intervals between them intersect at a single point. It is well known that rank-1 affine buildings are median spaces, but by a result of Haettel, higher rank buildings are not even coarse median. We define the notion of “2-median spac...
Saved in:
Published in: | Geometriae dedicata 2024-02, Vol.218 (1), Article 5 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Median spaces are spaces in which for every three points the three intervals between them intersect at a single point. It is well known that rank-1 affine buildings are median spaces, but by a result of Haettel, higher rank buildings are not even coarse median. We define the notion of “2-median space”, which roughly says that for every four points the minimal discs filling the four geodesic triangles they span intersect in a point or a geodesic segment. We show that CAT(0) Euclidean polygonal complexes, and in particular rank-2 affine buildings, are 2-median. In the appendix, we recover a special case of a result of Stadler of a Fary–Milnor type theorem and show in elementary tools that a minimal disc filling a geodesic triangle is injective. |
---|---|
ISSN: | 0046-5755 1572-9168 |
DOI: | 10.1007/s10711-023-00841-8 |