Loading…
Effects of Soil–Structure Interaction on Performance of Bridges During Earthquakes. Case Study: Integral Abutment Bridge in Pennsylvania, USA
Bridges are among the most important transportation elements that may be damaged by earthquakes. An integral abutment bridge (IAB) is a bridge linking the superstructure directly to the substructure. As soil piles, abutments, and superstructures act as a combined system to resist lateral loading on...
Saved in:
Published in: | Iranian journal of science and technology. Transactions of civil engineering 2023-12, Vol.47 (6), p.3487-3505 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Bridges are among the most important transportation elements that may be damaged by earthquakes. An integral abutment bridge (IAB) is a bridge linking the superstructure directly to the substructure. As soil piles, abutments, and superstructures act as a combined system to resist lateral loading on the bridge, soil stiffness has a major impact on load distribution. This research attempts to determine how the structure and soil parameters affect the IABs. The parametric study consists of four variables, namely bridge span (short, medium, and large spans were 18.3, 35.4, and 64.5 m, respectively), backfill height/pressure (3.1, 4.6, and 6.1 m, respectively), stiffness of soil mixture backfills (high, intermediate, and low), and soil density around the piles (high, intermediate, and low). Because of the small width–length ratio of the bridge, a 2D model of an IAB with soil springs around the piles and abutments was developed with finite element software. Findings show that the value of the backfill pressure affects girder axial forces and girder bending moments at the IAB. Also, the stiffness of soil mixture backfills is an important factor to change lateral displacements, while less movement is related to high stiffness of soil mixture backfills with intermediate clay around the pile. It is clear that the maximum axial girder moments at the superstructure generally decrease when the stiffness of the soil mixture behind the abutments and around piles increases, similar to pile deflection and abutment displacements. In addition to maximum abutment, the head moment decreases when abutment backfill is dense and increases when piles are located in hard clay, similar to pile moments. Lastly, dense sand backfill behind abutments is recommended since it decreases pile deflections, pile lateral forces, abutment displacements, abutment head moments, and particularly pile bending moments. |
---|---|
ISSN: | 2228-6160 2364-1843 |
DOI: | 10.1007/s40996-023-01122-w |