Loading…

Volterra-Type Integration Operators Between Weighted Bergman Spaces and Hardy Spaces

Given an analytic function g and a D weight ω on the unit disk D = { z ∈ C : | z | < 1 } , we characterize the boundedness and compactness of the Volterra-type integration operator J g ( f ) ( z ) = ∫ 0 z f ( λ ) g ′ ( λ ) d λ between the weighted Bergman spaces L a p ( ω ) and the Hardy spaces H...

Full description

Saved in:
Bibliographic Details
Published in:Computational methods and function theory 2023-12, Vol.23 (4), p.589-627
Main Authors: Duan, Yongjiang, Wang, Siyu, Wang, Zipeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Given an analytic function g and a D weight ω on the unit disk D = { z ∈ C : | z | < 1 } , we characterize the boundedness and compactness of the Volterra-type integration operator J g ( f ) ( z ) = ∫ 0 z f ( λ ) g ′ ( λ ) d λ between the weighted Bergman spaces L a p ( ω ) and the Hardy spaces H q for 0 < p , q < ∞ .
ISSN:1617-9447
2195-3724
DOI:10.1007/s40315-022-00474-0