Loading…
Volterra-Type Integration Operators Between Weighted Bergman Spaces and Hardy Spaces
Given an analytic function g and a D weight ω on the unit disk D = { z ∈ C : | z | < 1 } , we characterize the boundedness and compactness of the Volterra-type integration operator J g ( f ) ( z ) = ∫ 0 z f ( λ ) g ′ ( λ ) d λ between the weighted Bergman spaces L a p ( ω ) and the Hardy spaces H...
Saved in:
Published in: | Computational methods and function theory 2023-12, Vol.23 (4), p.589-627 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Given an analytic function
g
and a
D
weight
ω
on the unit disk
D
=
{
z
∈
C
:
|
z
|
<
1
}
, we characterize the boundedness and compactness of the Volterra-type integration operator
J
g
(
f
)
(
z
)
=
∫
0
z
f
(
λ
)
g
′
(
λ
)
d
λ
between the weighted Bergman spaces
L
a
p
(
ω
)
and the Hardy spaces
H
q
for
0
<
p
,
q
<
∞
. |
---|---|
ISSN: | 1617-9447 2195-3724 |
DOI: | 10.1007/s40315-022-00474-0 |