Loading…
Adaptive weighted wild horse optimizer based on backward learning and small-hole imaging strategy
Wild Horse Optimizer (WHO) is a population-based metaheuristic algorithm inspired by animal behavior, which mainly imitates the decent behavior, grazing behavior, mating behavior and leadership dominance behavior of wild horses in nature to find the optimal. The initialization of the population by i...
Saved in:
Published in: | Journal of intelligent & fuzzy systems 2023-11, Vol.45 (5), p.8091-8117 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Wild Horse Optimizer (WHO) is a population-based metaheuristic algorithm inspired by animal behavior, which mainly imitates the decent behavior, grazing behavior, mating behavior and leadership dominance behavior of wild horses in nature to find the optimal. The initialization of the population by imitating the behavior of wild horses is prone to uneven distribution of population positions, and its position updating method is prone to local optimal problems while improving the efficiency of the search. In order to enhance the population diversity and to break out of the local optimum, an adaptive weighted wild horse optimizer based on backward learning and small-hole imaging strategy is proposed. The backward learning strategy is used to enhance the population diversity and improve the uneven distribution of individuals; The adaptive weight and small-hole imaging strategy are added to the local search strategy to improve the global search ability and jump out of the local optimum. To verify the effectiveness of the proposed algorithm, simulation experiments were conducted by using 23 benchmark test functions to test the search ability and Whale Optimization Algorithm (WOA), Moth-Flame Optimization (MFO), Rat Swarm Optimizer (RSO) and Multi-Verse Optimizer (MVO) algorithms are compared in terms of their search performance, and finally four real engineering design problems are solved. The simulation results indicate that the proposed FHPWHO has excellent merit-seeking capability. |
---|---|
ISSN: | 1064-1246 1875-8967 |
DOI: | 10.3233/JIFS-232342 |