Loading…
Hom-associative algebras, Admissibility and Relative averaging operators
We introduce the notion of relative averaging operators on Hom-associative algebras with a representation. Relative averaging operators are twisted generalizations of relative averaging operators on associative algebras. We give two characterizations of relative averaging operators of Hom-associativ...
Saved in:
Published in: | arXiv.org 2023-08 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We introduce the notion of relative averaging operators on Hom-associative algebras with a representation. Relative averaging operators are twisted generalizations of relative averaging operators on associative algebras. We give two characterizations of relative averaging operators of Hom-associative algebras via graphs and Nijenhuis operators. A (homomorphic) relative averaging operator of Hom-associative algebras with respect to a given representation gives rise to Hom-associative (tri)dialgebras. By admissibility, a Hom-Jordan (tri)dialgebra and a Hom-(tri)Leibniz algebra can be obtained from Hom-associative (tri)dialgebra. |
---|---|
ISSN: | 2331-8422 |