Loading…
Random Apportionment: A Stochastic Solution to the Balinski-Young Impossibility
An apportionment paradox occurs when the rules for apportionment in a political system or distribution system produce results which seem to violate common sense. For example, The Alabama paradox occurs when the total number of seats increases but decreases the allocated number of a state and the pop...
Saved in:
Published in: | Methodology and computing in applied probability 2023-12, Vol.25 (4), p.91, Article 91 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An apportionment paradox occurs when the rules for apportionment in a political system or distribution system produce results which seem to violate common sense. For example, The Alabama paradox occurs when the total number of seats increases but decreases the allocated number of a state and the population paradox occurs when the population of a state increases but its allocated number of seats decreases. The Balinski-Young impossibility theorem showed that there is no deterministic apportionment method that can avoid the violation of the quota rule and doesn’t have both the Alabama and the population paradoxes. In this paper, we propose a randomized apportionment method as a stochastic solution to the Balinski-Young impossibility. |
---|---|
ISSN: | 1387-5841 1573-7713 |
DOI: | 10.1007/s11009-023-10070-x |