Loading…

Forest plantation diversification with Leguminosae tree species: Consequences on litter decomposition and nutrient recycling

Mixed tree plantations provide greater ecosystem services than monocultures. Leguminosae tree species can be appropriate complements to achieve a sustainable soil management target. A key aspect of species trait complementarity is the litter mixture effects in the litter decomposition process. We ev...

Full description

Saved in:
Bibliographic Details
Published in:Austral ecology 2023-12, Vol.48 (8), p.1888-1910
Main Authors: Lingeri, Paula C., Piazza, Maria‐Victoria, Caccia, Fernando D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mixed tree plantations provide greater ecosystem services than monocultures. Leguminosae tree species can be appropriate complements to achieve a sustainable soil management target. A key aspect of species trait complementarity is the litter mixture effects in the litter decomposition process. We evaluated how the mixture of poplar litter ( Populus deltoides Marsh.) with Leguminosae tree species modulated the litter decomposition process and C, N and P recycling, through changes driven by the Leguminosae litter chemical traits. Under field conditions, we compared poplar litter alone (monoculture) with its 50:50 mixture with Enterolobuim contortisiliquum (Vell.) Morong., or Peltophorum dubium (Spreng.). Compared to poplar litter, its mixture with E. contortisiliquum had a 25% lower C:N ratio and a similar N:P ratio, whereas mixture with P. dubium had a 9% lower C:N and a 29% lower N:P ratios. The mixture with E. contortisiliquum showed a 64% faster decomposition rate, and 55% and 203% faster C and N release rates, respectively, compared to poplar. In contrast, in the mixture with P. dubium , there was no difference in the litter, C and N decay rates with poplar litter alone. The mixture with P. dubium had a 37% lower P retention compared to poplar, whereas P was released rather than retained in the mixture with E. contortisiliquum. The mixture with E. contortisiliquum showed a net antagonistic effect in the litter decomposition rate. However, in the mixture, poplar litter decomposed 33% faster and the E. contotrtisiliquum litter decomposed 35% slower than species alone. The C:N and N:P ratios in the litter mixture were relevant traits shaping the magnitude and direction of litter decomposition and nutrient recycling processes. The incorporation of both Leguminosae to monospecific poplar plantations could contribute to counteract P limitation in this system and to improve soil fertility and functioning.
ISSN:1442-9985
1442-9993
DOI:10.1111/aec.13428