Loading…
Rankin-Selberg coefficients in large arithmetic progressions
Let (λ f ( n )) n ⩾1 be the Hecke eigenvalues of either a holomorphic Hecke eigencuspform or a Hecke-Maass cusp form f . We prove that, for any fixed η > 0, under the Ramanujan-Petersson conjecture for GL 2 Maass forms, the Rankin-Selberg coefficients (λ f ( n ) 2 ) n ⩾1 admit a level of distribu...
Saved in:
Published in: | Science China. Mathematics 2023-12, Vol.66 (12), p.2767-2778 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let (λ
f
(
n
))
n
⩾1
be the Hecke eigenvalues of either a holomorphic Hecke eigencuspform or a Hecke-Maass cusp form
f
. We prove that, for any fixed
η
> 0, under the Ramanujan-Petersson conjecture for GL
2
Maass forms, the Rankin-Selberg coefficients (λ
f
(
n
)
2
)
n
⩾1
admit a level of distribution
θ
= 2/5 + 1/260 −
η
in arithmetic progressions. |
---|---|
ISSN: | 1674-7283 1869-1862 |
DOI: | 10.1007/s11425-023-2155-6 |