Loading…

Rankin-Selberg coefficients in large arithmetic progressions

Let (λ f ( n )) n ⩾1 be the Hecke eigenvalues of either a holomorphic Hecke eigencuspform or a Hecke-Maass cusp form f . We prove that, for any fixed η > 0, under the Ramanujan-Petersson conjecture for GL 2 Maass forms, the Rankin-Selberg coefficients (λ f ( n ) 2 ) n ⩾1 admit a level of distribu...

Full description

Saved in:
Bibliographic Details
Published in:Science China. Mathematics 2023-12, Vol.66 (12), p.2767-2778
Main Authors: Kowalski, Emmanuel, Lin, Yongxiao, Michel, Philippe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let (λ f ( n )) n ⩾1 be the Hecke eigenvalues of either a holomorphic Hecke eigencuspform or a Hecke-Maass cusp form f . We prove that, for any fixed η > 0, under the Ramanujan-Petersson conjecture for GL 2 Maass forms, the Rankin-Selberg coefficients (λ f ( n ) 2 ) n ⩾1 admit a level of distribution θ = 2/5 + 1/260 − η in arithmetic progressions.
ISSN:1674-7283
1869-1862
DOI:10.1007/s11425-023-2155-6