Loading…
Progress in polymeric and metallic brake pads: A comprehensive review
The use of asbestos in brake pads is being eliminated due to its carcinogenic effect. Due to this, there is a need for better alternative in the brake pad material to replace asbestos fibers. This leads to the development of more natural fibers/filler-based brake pads which are safer to the environm...
Saved in:
Published in: | Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology Part J: Journal of Engineering Tribology, 2024-01, Vol.238 (1), p.3-25 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The use of asbestos in brake pads is being eliminated due to its carcinogenic effect. Due to this, there is a need for better alternative in the brake pad material to replace asbestos fibers. This leads to the development of more natural fibers/filler-based brake pads which are safer to the environment, cheaper, and readily available. Moreover, bio fillers-based brake pads have shown excellent performance compared to asbestos. This paper addresses the different composition of brake pad materials and manufacturing techniques. Common binders like epoxy resin, Phenolic resin-based brake pads were analyzed and its effect on the mechanical, tribological, and thermal performance were critically analyzed. Also, the performance of metal matrix-based brake pad has been analyzed in detail. It has been observed that utilizing natural fibers as a reinforcement provides an excellent braking performance compared to metallic and carbon fiber-based brake pads. This research will open new avenues towards “Net Zero.” |
---|---|
ISSN: | 1350-6501 2041-305X |
DOI: | 10.1177/13506501231204655 |