Loading…

Reynolds number asymptotics of wall-turbulence fluctuations

In continuation of our earlier work (Chen & Sreenivasan, J. Fluid Mech., vol. 908, 2021, R3; Chen & Sreenivasan, J. Fluid Mech., vol. 933, 2022a, A20 – together referred to as CS hereafter), we present a self-consistent Reynolds number asymptotics for wall-normal profiles of variances of str...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2023-11, Vol.976, Article A21
Main Authors: Chen, Xi, Sreenivasan, Katepalli R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In continuation of our earlier work (Chen & Sreenivasan, J. Fluid Mech., vol. 908, 2021, R3; Chen & Sreenivasan, J. Fluid Mech., vol. 933, 2022a, A20 – together referred to as CS hereafter), we present a self-consistent Reynolds number asymptotics for wall-normal profiles of variances of streamwise and spanwise velocity fluctuations as well as root-mean-square pressure, across the entire flow region of channel and pipe flows and flat-plate boundary layers. It is first shown that, when normalized by peak values, the Reynolds number dependence and wall-normal variation of all three profiles can be decoupled, in excellent agreement with available data, sharing the common inner expansion of the type $\phi (y^+)=f_0(y^+)+f_1(y^+)/Re^{1/4}_\tau$, where $\phi$ is one of the quantities just mentioned, the functions $f_0$ and $f_1$ depend only on $y^+$, and $Re_\tau$ is the friction Reynolds number. Here, the superscript $+$ indicates normalization by wall variables. We show that this result is completely consistent with CS. Secondly, by matching the above inner expansion and the outer flow similarity form, a bounded variation $\phi (y^\ast )=\alpha _\phi -\beta _{\phi }y^{{\ast {1}/{4}}}$ is derived for the outer region where, for each $\phi$, the constants $\alpha _\phi$ and $\beta _{\phi }$ are independent of $Re_\tau$ and $y^\ast$ $\equiv y^+/Re_\tau$ – also in excellent agreement with simulations and experimental data. One of the predictions of the analysis is that, for asymptotically high Reynolds numbers, a finite plateau $\phi \approx \alpha _\phi$ appears in the outer region. This result sheds light on the intriguing issue of the outer shoulder of the variance of the streamwise velocity fluctuation, which should be bounded by the asymptotic plateau of approximately 10.
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2023.928