Loading…

The effect of slow adsorption of phosphate on its transport during the infiltration process in saturated agricultural soils

Assessment of phosphorus (P)-infiltrating croplands is essential for the preservation of the water environment. It has been pointed out that a huge discrepancy lies in the different evaluation methods of P adsorption, such as batch experiments and column experiments, which makes it difficult to demo...

Full description

Saved in:
Bibliographic Details
Published in:Soil science and plant nutrition (Tokyo) 2023-11, Vol.69 (5-6), p.265-272
Main Authors: Tanaka, Rina, Hama, Takehide, Nakamura, Kimihito, Sato, Kenji, Wakita, Risa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Assessment of phosphorus (P)-infiltrating croplands is essential for the preservation of the water environment. It has been pointed out that a huge discrepancy lies in the different evaluation methods of P adsorption, such as batch experiments and column experiments, which makes it difficult to demonstrate P mobility under flow conditions. The objective of this study was to evaluate the applicability of the convective-dispersion equation using the parameters of the Langmuir-type isotherm obtained from batch experiments with different reaction times: the adsorption capacity of soil (qmax) = 0.112 (g kg−1) for a Gray lowland soil with 24 h reaction time, qmax = 0.484 (g kg−1) for an Andosol (volcanic ash soil) with 24 h reaction time, and qmax = 1.17 (g kg−1) for an Andosol with 32 d reaction time, for describing P mobility in typical Japanese agricultural soils under fast flow conditions. The breakthrough curves of P infiltrating the soil columns demonstrate nonequilibrium P adsorption by the soil. The chemical nonequilibrium model, with a kinetic adsorption rate of α = 0.40 (Gray lowland soil) and 0.098 (Andosol), succeeded in describing the observations in the column experiments. Compared with Gray lowland soil, which is relatively rich in iron oxide, P mobility was largely affected by kinetic sorption in Andosol, which is relatively rich in allophane. It is suggested that the P adsorption capacity of soils should be evaluated reflecting the soil composition in order to simulate the P mobility under flow conditions. In particular, the slow adsorption (long-lasting adsorption) of P by the soil should be considered in the estimation of the P transport.
ISSN:0038-0768
1747-0765
DOI:10.1080/00380768.2023.2258520