Loading…

A Numerical Model for the Effective Damping Properties of Unidirectional Fiber-Reinforced Composites

The effective damping characteristics of a polymer-based unidirectional fiber-reinforced composite are explored. A continuum micromechanical formulation is used to determine the effective damping parameters of a fiber-reinforced composite by the strain energy method. The damping properties include t...

Full description

Saved in:
Bibliographic Details
Published in:Mechanics of composite materials 2023-11, Vol.59 (5), p.1031-1044
Main Authors: Mishra, V. N., Sarangi, S. K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The effective damping characteristics of a polymer-based unidirectional fiber-reinforced composite are explored. A continuum micromechanical formulation is used to determine the effective damping parameters of a fiber-reinforced composite by the strain energy method. The damping properties include the loss factors corresponding to extensional, shear and coupled shear-extensional strains of the composite. First, the effective parameters of a homogenized composite are expressed employing phase-volume-averaged strain concentration matrices. These matrices are numerically evaluated by applying homogeneous displacement boundary conditions to the finite element formulation of the representative volume element (RVE) of composite. The accuracy of the present micromechanics formulation of RVE is established by comparing the loss factors calculated using the present model with those available in the published literature. The results obtained are also compared with existing experimental data. The damping properties calculated by the present model agree well with their experimental values. The effect of various cross-sectional shapes of fibers in the composite on the normal and shear loss factors calculated is also investigated.
ISSN:0191-5665
1573-8922
DOI:10.1007/s11029-023-10150-6