Loading…
Ru-doped nano grain hydrophilic copper hydroxide electrodes for supercapacitor application
Metal self-anodization for the generation of hydroxides represents a versatile innovation. In the preparation of Ru-doped copper hydroxide thin films, copper plates were subjected to self-anodization in a 1 M ethanolic NaOH bath, maintaining a constant deposition potential of 0.8 V. The resulting th...
Saved in:
Published in: | Journal of materials science. Materials in electronics 2023-12, Vol.34 (36), p.2309, Article 2309 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Metal self-anodization for the generation of hydroxides represents a versatile innovation. In the preparation of Ru-doped copper hydroxide thin films, copper plates were subjected to self-anodization in a 1 M ethanolic NaOH bath, maintaining a constant deposition potential of 0.8 V. The resulting thin films of Cu(OH)
2
were then used directly for the doping of Ru, employing a cathodization technique. This cathodization process was conducted separately using RuCl
3
electrolytes prepared in methanol, ethanol, and propanol. Furthermore, to assess the impact of different doping deposition potentials ranging from 0.7 to 0.9 V on the structural and electrochemical properties of the Ru-doped Cu(OH)
2
material, optimized electrodes were prepared. The phase and crystal structure of the deposited material were confirmed through XRD analysis. Scanning electron microscope images revealed a spongy, granular, and rough surface, a characteristic further confirmed by atomic force microscopy analysis. Transmission electron microscope images displayed the formation of nano granules. To evaluate the electrochemical performance of the samples, cyclic voltammetry (CV), chronopotentiometry (CP) tests, and impedance spectroscopy (EIS) were conducted in a 1 M NaOH solution. Notably, the optimized sample exhibited a maximum specific capacitance (SC) of 4133.3 F/g, with a measured diffusion coefficient of 2.21 × 10
−16
cm
2
/s. |
---|---|
ISSN: | 0957-4522 1573-482X |
DOI: | 10.1007/s10854-023-11708-9 |