Loading…
Ru-doped nano grain hydrophilic copper hydroxide electrodes for supercapacitor application
Metal self-anodization for the generation of hydroxides represents a versatile innovation. In the preparation of Ru-doped copper hydroxide thin films, copper plates were subjected to self-anodization in a 1 M ethanolic NaOH bath, maintaining a constant deposition potential of 0.8 V. The resulting th...
Saved in:
Published in: | Journal of materials science. Materials in electronics 2023-12, Vol.34 (36), p.2309, Article 2309 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-4ed1cd3d40f319c119334720a2a93309e8b672eb64af5426501f374248da648e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-4ed1cd3d40f319c119334720a2a93309e8b672eb64af5426501f374248da648e3 |
container_end_page | |
container_issue | 36 |
container_start_page | 2309 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 34 |
creator | Ghadage, T. S. Kambale, S. V. Fugare, B. Y. Ambare, R. C. Lokhande, B. J. |
description | Metal self-anodization for the generation of hydroxides represents a versatile innovation. In the preparation of Ru-doped copper hydroxide thin films, copper plates were subjected to self-anodization in a 1 M ethanolic NaOH bath, maintaining a constant deposition potential of 0.8 V. The resulting thin films of Cu(OH)
2
were then used directly for the doping of Ru, employing a cathodization technique. This cathodization process was conducted separately using RuCl
3
electrolytes prepared in methanol, ethanol, and propanol. Furthermore, to assess the impact of different doping deposition potentials ranging from 0.7 to 0.9 V on the structural and electrochemical properties of the Ru-doped Cu(OH)
2
material, optimized electrodes were prepared. The phase and crystal structure of the deposited material were confirmed through XRD analysis. Scanning electron microscope images revealed a spongy, granular, and rough surface, a characteristic further confirmed by atomic force microscopy analysis. Transmission electron microscope images displayed the formation of nano granules. To evaluate the electrochemical performance of the samples, cyclic voltammetry (CV), chronopotentiometry (CP) tests, and impedance spectroscopy (EIS) were conducted in a 1 M NaOH solution. Notably, the optimized sample exhibited a maximum specific capacitance (SC) of 4133.3 F/g, with a measured diffusion coefficient of 2.21 × 10
−16
cm
2
/s. |
doi_str_mv | 10.1007/s10854-023-11708-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2901693698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2901693698</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4ed1cd3d40f319c119334720a2a93309e8b672eb64af5426501f374248da648e3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wNWA6-jNY2aSpRRfUBBEQdyENMm0KXUSkxmw_97oCO5c3dc558KH0DmBSwLQXmUCouYYKMOEtCCwPEAzUrcMc0FfD9EMZN1iXlN6jE5y3gJAw5mYobenEdsQna163YdqnbTvq83ephA3fudNZUKMLk2rT29d5XbODClYl6supCqP5Wx01MYPZdQxFpcefOhP0VGnd9md_dY5erm9eV7c4-Xj3cPieokNI3LA3FliLLMcujIbQiRjvKWgqS4dSCdWTUvdquG6qzltaiAdaznlwuqGC8fm6GLKjSl8jC4PahvG1JeXikogjWSNFEVFJ5VJIefkOhWTf9dprwiob4ZqYqgKQ_XDUMliYpMpF3G_dukv-h_XFy8UdQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901693698</pqid></control><display><type>article</type><title>Ru-doped nano grain hydrophilic copper hydroxide electrodes for supercapacitor application</title><source>Springer Link</source><creator>Ghadage, T. S. ; Kambale, S. V. ; Fugare, B. Y. ; Ambare, R. C. ; Lokhande, B. J.</creator><creatorcontrib>Ghadage, T. S. ; Kambale, S. V. ; Fugare, B. Y. ; Ambare, R. C. ; Lokhande, B. J.</creatorcontrib><description>Metal self-anodization for the generation of hydroxides represents a versatile innovation. In the preparation of Ru-doped copper hydroxide thin films, copper plates were subjected to self-anodization in a 1 M ethanolic NaOH bath, maintaining a constant deposition potential of 0.8 V. The resulting thin films of Cu(OH)
2
were then used directly for the doping of Ru, employing a cathodization technique. This cathodization process was conducted separately using RuCl
3
electrolytes prepared in methanol, ethanol, and propanol. Furthermore, to assess the impact of different doping deposition potentials ranging from 0.7 to 0.9 V on the structural and electrochemical properties of the Ru-doped Cu(OH)
2
material, optimized electrodes were prepared. The phase and crystal structure of the deposited material were confirmed through XRD analysis. Scanning electron microscope images revealed a spongy, granular, and rough surface, a characteristic further confirmed by atomic force microscopy analysis. Transmission electron microscope images displayed the formation of nano granules. To evaluate the electrochemical performance of the samples, cyclic voltammetry (CV), chronopotentiometry (CP) tests, and impedance spectroscopy (EIS) were conducted in a 1 M NaOH solution. Notably, the optimized sample exhibited a maximum specific capacitance (SC) of 4133.3 F/g, with a measured diffusion coefficient of 2.21 × 10
−16
cm
2
/s.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-023-11708-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Anodizing baths ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Copper ; Crystal structure ; Deposition ; Diffusion coefficient ; Doping ; Electrochemical analysis ; Electrodes ; Electrolytes ; Electron microscopes ; Ethanol ; Hydroxides ; Materials Science ; Metal plates ; Optical and Electronic Materials ; Ruthenium trichloride ; Sodium hydroxide ; Thin films</subject><ispartof>Journal of materials science. Materials in electronics, 2023-12, Vol.34 (36), p.2309, Article 2309</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4ed1cd3d40f319c119334720a2a93309e8b672eb64af5426501f374248da648e3</citedby><cites>FETCH-LOGICAL-c319t-4ed1cd3d40f319c119334720a2a93309e8b672eb64af5426501f374248da648e3</cites><orcidid>0000-0002-6780-5765</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ghadage, T. S.</creatorcontrib><creatorcontrib>Kambale, S. V.</creatorcontrib><creatorcontrib>Fugare, B. Y.</creatorcontrib><creatorcontrib>Ambare, R. C.</creatorcontrib><creatorcontrib>Lokhande, B. J.</creatorcontrib><title>Ru-doped nano grain hydrophilic copper hydroxide electrodes for supercapacitor application</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Metal self-anodization for the generation of hydroxides represents a versatile innovation. In the preparation of Ru-doped copper hydroxide thin films, copper plates were subjected to self-anodization in a 1 M ethanolic NaOH bath, maintaining a constant deposition potential of 0.8 V. The resulting thin films of Cu(OH)
2
were then used directly for the doping of Ru, employing a cathodization technique. This cathodization process was conducted separately using RuCl
3
electrolytes prepared in methanol, ethanol, and propanol. Furthermore, to assess the impact of different doping deposition potentials ranging from 0.7 to 0.9 V on the structural and electrochemical properties of the Ru-doped Cu(OH)
2
material, optimized electrodes were prepared. The phase and crystal structure of the deposited material were confirmed through XRD analysis. Scanning electron microscope images revealed a spongy, granular, and rough surface, a characteristic further confirmed by atomic force microscopy analysis. Transmission electron microscope images displayed the formation of nano granules. To evaluate the electrochemical performance of the samples, cyclic voltammetry (CV), chronopotentiometry (CP) tests, and impedance spectroscopy (EIS) were conducted in a 1 M NaOH solution. Notably, the optimized sample exhibited a maximum specific capacitance (SC) of 4133.3 F/g, with a measured diffusion coefficient of 2.21 × 10
−16
cm
2
/s.</description><subject>Anodizing baths</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Copper</subject><subject>Crystal structure</subject><subject>Deposition</subject><subject>Diffusion coefficient</subject><subject>Doping</subject><subject>Electrochemical analysis</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electron microscopes</subject><subject>Ethanol</subject><subject>Hydroxides</subject><subject>Materials Science</subject><subject>Metal plates</subject><subject>Optical and Electronic Materials</subject><subject>Ruthenium trichloride</subject><subject>Sodium hydroxide</subject><subject>Thin films</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wNWA6-jNY2aSpRRfUBBEQdyENMm0KXUSkxmw_97oCO5c3dc558KH0DmBSwLQXmUCouYYKMOEtCCwPEAzUrcMc0FfD9EMZN1iXlN6jE5y3gJAw5mYobenEdsQna163YdqnbTvq83ephA3fudNZUKMLk2rT29d5XbODClYl6supCqP5Wx01MYPZdQxFpcefOhP0VGnd9md_dY5erm9eV7c4-Xj3cPieokNI3LA3FliLLMcujIbQiRjvKWgqS4dSCdWTUvdquG6qzltaiAdaznlwuqGC8fm6GLKjSl8jC4PahvG1JeXikogjWSNFEVFJ5VJIefkOhWTf9dprwiob4ZqYqgKQ_XDUMliYpMpF3G_dukv-h_XFy8UdQA</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Ghadage, T. S.</creator><creator>Kambale, S. V.</creator><creator>Fugare, B. Y.</creator><creator>Ambare, R. C.</creator><creator>Lokhande, B. J.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-6780-5765</orcidid></search><sort><creationdate>20231201</creationdate><title>Ru-doped nano grain hydrophilic copper hydroxide electrodes for supercapacitor application</title><author>Ghadage, T. S. ; Kambale, S. V. ; Fugare, B. Y. ; Ambare, R. C. ; Lokhande, B. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4ed1cd3d40f319c119334720a2a93309e8b672eb64af5426501f374248da648e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anodizing baths</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Copper</topic><topic>Crystal structure</topic><topic>Deposition</topic><topic>Diffusion coefficient</topic><topic>Doping</topic><topic>Electrochemical analysis</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electron microscopes</topic><topic>Ethanol</topic><topic>Hydroxides</topic><topic>Materials Science</topic><topic>Metal plates</topic><topic>Optical and Electronic Materials</topic><topic>Ruthenium trichloride</topic><topic>Sodium hydroxide</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghadage, T. S.</creatorcontrib><creatorcontrib>Kambale, S. V.</creatorcontrib><creatorcontrib>Fugare, B. Y.</creatorcontrib><creatorcontrib>Ambare, R. C.</creatorcontrib><creatorcontrib>Lokhande, B. J.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghadage, T. S.</au><au>Kambale, S. V.</au><au>Fugare, B. Y.</au><au>Ambare, R. C.</au><au>Lokhande, B. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ru-doped nano grain hydrophilic copper hydroxide electrodes for supercapacitor application</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>34</volume><issue>36</issue><spage>2309</spage><pages>2309-</pages><artnum>2309</artnum><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Metal self-anodization for the generation of hydroxides represents a versatile innovation. In the preparation of Ru-doped copper hydroxide thin films, copper plates were subjected to self-anodization in a 1 M ethanolic NaOH bath, maintaining a constant deposition potential of 0.8 V. The resulting thin films of Cu(OH)
2
were then used directly for the doping of Ru, employing a cathodization technique. This cathodization process was conducted separately using RuCl
3
electrolytes prepared in methanol, ethanol, and propanol. Furthermore, to assess the impact of different doping deposition potentials ranging from 0.7 to 0.9 V on the structural and electrochemical properties of the Ru-doped Cu(OH)
2
material, optimized electrodes were prepared. The phase and crystal structure of the deposited material were confirmed through XRD analysis. Scanning electron microscope images revealed a spongy, granular, and rough surface, a characteristic further confirmed by atomic force microscopy analysis. Transmission electron microscope images displayed the formation of nano granules. To evaluate the electrochemical performance of the samples, cyclic voltammetry (CV), chronopotentiometry (CP) tests, and impedance spectroscopy (EIS) were conducted in a 1 M NaOH solution. Notably, the optimized sample exhibited a maximum specific capacitance (SC) of 4133.3 F/g, with a measured diffusion coefficient of 2.21 × 10
−16
cm
2
/s.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-023-11708-9</doi><orcidid>https://orcid.org/0000-0002-6780-5765</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2023-12, Vol.34 (36), p.2309, Article 2309 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_2901693698 |
source | Springer Link |
subjects | Anodizing baths Characterization and Evaluation of Materials Chemistry and Materials Science Copper Crystal structure Deposition Diffusion coefficient Doping Electrochemical analysis Electrodes Electrolytes Electron microscopes Ethanol Hydroxides Materials Science Metal plates Optical and Electronic Materials Ruthenium trichloride Sodium hydroxide Thin films |
title | Ru-doped nano grain hydrophilic copper hydroxide electrodes for supercapacitor application |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A41%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ru-doped%20nano%20grain%20hydrophilic%20copper%20hydroxide%20electrodes%20for%20supercapacitor%20application&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Ghadage,%20T.%20S.&rft.date=2023-12-01&rft.volume=34&rft.issue=36&rft.spage=2309&rft.pages=2309-&rft.artnum=2309&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-023-11708-9&rft_dat=%3Cproquest_cross%3E2901693698%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-4ed1cd3d40f319c119334720a2a93309e8b672eb64af5426501f374248da648e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2901693698&rft_id=info:pmid/&rfr_iscdi=true |