Loading…

Ru-doped nano grain hydrophilic copper hydroxide electrodes for supercapacitor application

Metal self-anodization for the generation of hydroxides represents a versatile innovation. In the preparation of Ru-doped copper hydroxide thin films, copper plates were subjected to self-anodization in a 1 M ethanolic NaOH bath, maintaining a constant deposition potential of 0.8 V. The resulting th...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science. Materials in electronics 2023-12, Vol.34 (36), p.2309, Article 2309
Main Authors: Ghadage, T. S., Kambale, S. V., Fugare, B. Y., Ambare, R. C., Lokhande, B. J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-4ed1cd3d40f319c119334720a2a93309e8b672eb64af5426501f374248da648e3
cites cdi_FETCH-LOGICAL-c319t-4ed1cd3d40f319c119334720a2a93309e8b672eb64af5426501f374248da648e3
container_end_page
container_issue 36
container_start_page 2309
container_title Journal of materials science. Materials in electronics
container_volume 34
creator Ghadage, T. S.
Kambale, S. V.
Fugare, B. Y.
Ambare, R. C.
Lokhande, B. J.
description Metal self-anodization for the generation of hydroxides represents a versatile innovation. In the preparation of Ru-doped copper hydroxide thin films, copper plates were subjected to self-anodization in a 1 M ethanolic NaOH bath, maintaining a constant deposition potential of 0.8 V. The resulting thin films of Cu(OH) 2 were then used directly for the doping of Ru, employing a cathodization technique. This cathodization process was conducted separately using RuCl 3 electrolytes prepared in methanol, ethanol, and propanol. Furthermore, to assess the impact of different doping deposition potentials ranging from 0.7 to 0.9 V on the structural and electrochemical properties of the Ru-doped Cu(OH) 2 material, optimized electrodes were prepared. The phase and crystal structure of the deposited material were confirmed through XRD analysis. Scanning electron microscope images revealed a spongy, granular, and rough surface, a characteristic further confirmed by atomic force microscopy analysis. Transmission electron microscope images displayed the formation of nano granules. To evaluate the electrochemical performance of the samples, cyclic voltammetry (CV), chronopotentiometry (CP) tests, and impedance spectroscopy (EIS) were conducted in a 1 M NaOH solution. Notably, the optimized sample exhibited a maximum specific capacitance (SC) of 4133.3 F/g, with a measured diffusion coefficient of 2.21 × 10 −16 cm 2 /s.
doi_str_mv 10.1007/s10854-023-11708-9
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2901693698</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2901693698</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-4ed1cd3d40f319c119334720a2a93309e8b672eb64af5426501f374248da648e3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKt_wNWA6-jNY2aSpRRfUBBEQdyENMm0KXUSkxmw_97oCO5c3dc558KH0DmBSwLQXmUCouYYKMOEtCCwPEAzUrcMc0FfD9EMZN1iXlN6jE5y3gJAw5mYobenEdsQna163YdqnbTvq83ephA3fudNZUKMLk2rT29d5XbODClYl6supCqP5Wx01MYPZdQxFpcefOhP0VGnd9md_dY5erm9eV7c4-Xj3cPieokNI3LA3FliLLMcujIbQiRjvKWgqS4dSCdWTUvdquG6qzltaiAdaznlwuqGC8fm6GLKjSl8jC4PahvG1JeXikogjWSNFEVFJ5VJIefkOhWTf9dprwiob4ZqYqgKQ_XDUMliYpMpF3G_dukv-h_XFy8UdQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901693698</pqid></control><display><type>article</type><title>Ru-doped nano grain hydrophilic copper hydroxide electrodes for supercapacitor application</title><source>Springer Link</source><creator>Ghadage, T. S. ; Kambale, S. V. ; Fugare, B. Y. ; Ambare, R. C. ; Lokhande, B. J.</creator><creatorcontrib>Ghadage, T. S. ; Kambale, S. V. ; Fugare, B. Y. ; Ambare, R. C. ; Lokhande, B. J.</creatorcontrib><description>Metal self-anodization for the generation of hydroxides represents a versatile innovation. In the preparation of Ru-doped copper hydroxide thin films, copper plates were subjected to self-anodization in a 1 M ethanolic NaOH bath, maintaining a constant deposition potential of 0.8 V. The resulting thin films of Cu(OH) 2 were then used directly for the doping of Ru, employing a cathodization technique. This cathodization process was conducted separately using RuCl 3 electrolytes prepared in methanol, ethanol, and propanol. Furthermore, to assess the impact of different doping deposition potentials ranging from 0.7 to 0.9 V on the structural and electrochemical properties of the Ru-doped Cu(OH) 2 material, optimized electrodes were prepared. The phase and crystal structure of the deposited material were confirmed through XRD analysis. Scanning electron microscope images revealed a spongy, granular, and rough surface, a characteristic further confirmed by atomic force microscopy analysis. Transmission electron microscope images displayed the formation of nano granules. To evaluate the electrochemical performance of the samples, cyclic voltammetry (CV), chronopotentiometry (CP) tests, and impedance spectroscopy (EIS) were conducted in a 1 M NaOH solution. Notably, the optimized sample exhibited a maximum specific capacitance (SC) of 4133.3 F/g, with a measured diffusion coefficient of 2.21 × 10 −16 cm 2 /s.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-023-11708-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Anodizing baths ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Copper ; Crystal structure ; Deposition ; Diffusion coefficient ; Doping ; Electrochemical analysis ; Electrodes ; Electrolytes ; Electron microscopes ; Ethanol ; Hydroxides ; Materials Science ; Metal plates ; Optical and Electronic Materials ; Ruthenium trichloride ; Sodium hydroxide ; Thin films</subject><ispartof>Journal of materials science. Materials in electronics, 2023-12, Vol.34 (36), p.2309, Article 2309</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-4ed1cd3d40f319c119334720a2a93309e8b672eb64af5426501f374248da648e3</citedby><cites>FETCH-LOGICAL-c319t-4ed1cd3d40f319c119334720a2a93309e8b672eb64af5426501f374248da648e3</cites><orcidid>0000-0002-6780-5765</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ghadage, T. S.</creatorcontrib><creatorcontrib>Kambale, S. V.</creatorcontrib><creatorcontrib>Fugare, B. Y.</creatorcontrib><creatorcontrib>Ambare, R. C.</creatorcontrib><creatorcontrib>Lokhande, B. J.</creatorcontrib><title>Ru-doped nano grain hydrophilic copper hydroxide electrodes for supercapacitor application</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Metal self-anodization for the generation of hydroxides represents a versatile innovation. In the preparation of Ru-doped copper hydroxide thin films, copper plates were subjected to self-anodization in a 1 M ethanolic NaOH bath, maintaining a constant deposition potential of 0.8 V. The resulting thin films of Cu(OH) 2 were then used directly for the doping of Ru, employing a cathodization technique. This cathodization process was conducted separately using RuCl 3 electrolytes prepared in methanol, ethanol, and propanol. Furthermore, to assess the impact of different doping deposition potentials ranging from 0.7 to 0.9 V on the structural and electrochemical properties of the Ru-doped Cu(OH) 2 material, optimized electrodes were prepared. The phase and crystal structure of the deposited material were confirmed through XRD analysis. Scanning electron microscope images revealed a spongy, granular, and rough surface, a characteristic further confirmed by atomic force microscopy analysis. Transmission electron microscope images displayed the formation of nano granules. To evaluate the electrochemical performance of the samples, cyclic voltammetry (CV), chronopotentiometry (CP) tests, and impedance spectroscopy (EIS) were conducted in a 1 M NaOH solution. Notably, the optimized sample exhibited a maximum specific capacitance (SC) of 4133.3 F/g, with a measured diffusion coefficient of 2.21 × 10 −16 cm 2 /s.</description><subject>Anodizing baths</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Copper</subject><subject>Crystal structure</subject><subject>Deposition</subject><subject>Diffusion coefficient</subject><subject>Doping</subject><subject>Electrochemical analysis</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electron microscopes</subject><subject>Ethanol</subject><subject>Hydroxides</subject><subject>Materials Science</subject><subject>Metal plates</subject><subject>Optical and Electronic Materials</subject><subject>Ruthenium trichloride</subject><subject>Sodium hydroxide</subject><subject>Thin films</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKt_wNWA6-jNY2aSpRRfUBBEQdyENMm0KXUSkxmw_97oCO5c3dc558KH0DmBSwLQXmUCouYYKMOEtCCwPEAzUrcMc0FfD9EMZN1iXlN6jE5y3gJAw5mYobenEdsQna163YdqnbTvq83ephA3fudNZUKMLk2rT29d5XbODClYl6supCqP5Wx01MYPZdQxFpcefOhP0VGnd9md_dY5erm9eV7c4-Xj3cPieokNI3LA3FliLLMcujIbQiRjvKWgqS4dSCdWTUvdquG6qzltaiAdaznlwuqGC8fm6GLKjSl8jC4PahvG1JeXikogjWSNFEVFJ5VJIefkOhWTf9dprwiob4ZqYqgKQ_XDUMliYpMpF3G_dukv-h_XFy8UdQA</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Ghadage, T. S.</creator><creator>Kambale, S. V.</creator><creator>Fugare, B. Y.</creator><creator>Ambare, R. C.</creator><creator>Lokhande, B. J.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-6780-5765</orcidid></search><sort><creationdate>20231201</creationdate><title>Ru-doped nano grain hydrophilic copper hydroxide electrodes for supercapacitor application</title><author>Ghadage, T. S. ; Kambale, S. V. ; Fugare, B. Y. ; Ambare, R. C. ; Lokhande, B. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-4ed1cd3d40f319c119334720a2a93309e8b672eb64af5426501f374248da648e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anodizing baths</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Copper</topic><topic>Crystal structure</topic><topic>Deposition</topic><topic>Diffusion coefficient</topic><topic>Doping</topic><topic>Electrochemical analysis</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electron microscopes</topic><topic>Ethanol</topic><topic>Hydroxides</topic><topic>Materials Science</topic><topic>Metal plates</topic><topic>Optical and Electronic Materials</topic><topic>Ruthenium trichloride</topic><topic>Sodium hydroxide</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghadage, T. S.</creatorcontrib><creatorcontrib>Kambale, S. V.</creatorcontrib><creatorcontrib>Fugare, B. Y.</creatorcontrib><creatorcontrib>Ambare, R. C.</creatorcontrib><creatorcontrib>Lokhande, B. J.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghadage, T. S.</au><au>Kambale, S. V.</au><au>Fugare, B. Y.</au><au>Ambare, R. C.</au><au>Lokhande, B. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ru-doped nano grain hydrophilic copper hydroxide electrodes for supercapacitor application</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>34</volume><issue>36</issue><spage>2309</spage><pages>2309-</pages><artnum>2309</artnum><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Metal self-anodization for the generation of hydroxides represents a versatile innovation. In the preparation of Ru-doped copper hydroxide thin films, copper plates were subjected to self-anodization in a 1 M ethanolic NaOH bath, maintaining a constant deposition potential of 0.8 V. The resulting thin films of Cu(OH) 2 were then used directly for the doping of Ru, employing a cathodization technique. This cathodization process was conducted separately using RuCl 3 electrolytes prepared in methanol, ethanol, and propanol. Furthermore, to assess the impact of different doping deposition potentials ranging from 0.7 to 0.9 V on the structural and electrochemical properties of the Ru-doped Cu(OH) 2 material, optimized electrodes were prepared. The phase and crystal structure of the deposited material were confirmed through XRD analysis. Scanning electron microscope images revealed a spongy, granular, and rough surface, a characteristic further confirmed by atomic force microscopy analysis. Transmission electron microscope images displayed the formation of nano granules. To evaluate the electrochemical performance of the samples, cyclic voltammetry (CV), chronopotentiometry (CP) tests, and impedance spectroscopy (EIS) were conducted in a 1 M NaOH solution. Notably, the optimized sample exhibited a maximum specific capacitance (SC) of 4133.3 F/g, with a measured diffusion coefficient of 2.21 × 10 −16 cm 2 /s.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-023-11708-9</doi><orcidid>https://orcid.org/0000-0002-6780-5765</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0957-4522
ispartof Journal of materials science. Materials in electronics, 2023-12, Vol.34 (36), p.2309, Article 2309
issn 0957-4522
1573-482X
language eng
recordid cdi_proquest_journals_2901693698
source Springer Link
subjects Anodizing baths
Characterization and Evaluation of Materials
Chemistry and Materials Science
Copper
Crystal structure
Deposition
Diffusion coefficient
Doping
Electrochemical analysis
Electrodes
Electrolytes
Electron microscopes
Ethanol
Hydroxides
Materials Science
Metal plates
Optical and Electronic Materials
Ruthenium trichloride
Sodium hydroxide
Thin films
title Ru-doped nano grain hydrophilic copper hydroxide electrodes for supercapacitor application
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A41%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ru-doped%20nano%20grain%20hydrophilic%20copper%20hydroxide%20electrodes%20for%20supercapacitor%20application&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Ghadage,%20T.%20S.&rft.date=2023-12-01&rft.volume=34&rft.issue=36&rft.spage=2309&rft.pages=2309-&rft.artnum=2309&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-023-11708-9&rft_dat=%3Cproquest_cross%3E2901693698%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-4ed1cd3d40f319c119334720a2a93309e8b672eb64af5426501f374248da648e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2901693698&rft_id=info:pmid/&rfr_iscdi=true