Loading…
The entanglement membrane in exactly solvable lattice models
Entanglement membrane theory is an effective coarse-grained description of entanglement dynamics and operator growth in chaotic quantum many-body systems. The fundamental quantity characterizing the membrane is the entanglement line tension. However, determining the entanglement line tension for mic...
Saved in:
Published in: | arXiv.org 2024-06 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Entanglement membrane theory is an effective coarse-grained description of entanglement dynamics and operator growth in chaotic quantum many-body systems. The fundamental quantity characterizing the membrane is the entanglement line tension. However, determining the entanglement line tension for microscopic models is in general exponentially difficult. We compute the entanglement line tension in a recently introduced class of exactly solvable yet chaotic unitary circuits, so-called generalized dual-unitary circuits, obtaining a non-trivial form that gives rise to a hierarchy of velocity scales with \(v_E |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2312.12509 |